个人简介
主要从事结构健康监测及其在轨道交通基础设施中的应用相关研究,开展基于包括声发射、超声体波、超声导波、超声传感网络等超声无损检测与监测技术的研发。
作为独立项目负责人主持香港理工大学研究助理教授基金1项(25万港币),作为项目共同负责人主持项目5项,合计HK$2396万港币,包括中国科技部港澳台科技创新合作重点专项1项,深圳市科创委深圳虚拟大学园专项资金1项,香港研资委研究影响基金1项,香港理工大学大型设备项目1项,香港理工大学重点专项1项。参与国家自然科学基金(面上)项目等1项。
近五年出版英文专著2章,发表SCI论文18篇,其中一作/通讯14篇。获得ASME Transactions: Journal of Tribology 2019年度唯一最佳期刊论文奖。担任期刊《Advances in Structural Engineering》客座编辑;担任2018年IWSHM-RS大会分会场主席,2020年SPIE Smart Structures & Nondestructive Evaluation大会分会场主席。
在香港理工大学担任研究助理教授期间主讲全英文本科生专业课程《Advanced Structural Analysis》(高等结构分析,结构力学),研究生核心专业必修课程《Seismic Design of Building Structures》(抗震设计);同时担任全英文全本科生专业课程《Engineers in Society》(社会中的工程师)。指导了数十个本科生的本科课程设计,并作为副导师指导4位博士生研究。
教育背景
2010.11-2015.06 博士 英国谢菲尔德大学 (University of Sheffield)
工程学院机械系摩擦学组 导师:Roger Lewis(英国皇家工程院/RSSB Wheel/Rail Interface Low Adhesion Management研究主席)
研究方向:摩擦学,接触力学,超声波无损检测技术,轮轨接触
2006.09-2010.07 学士 哈尔滨工业大学
机电学院(实验学院)机械设计制造及其自动化专业
课题方向:超声波电机
工作履历
2019.04-2022.03 香港理工大学 研究助理教授(教学科研岗)
国家轨道交通电气化与自动化工程技术研究中心(香港分中心)
主研方向:结构健康监测、交通基础设施(铁路)状态监测、交通基础设施(轨道/桥梁)与高耸结构损伤检测、超声导波技术及传感网络技术研发
2017.05-2019.04 香港理工大学 博士后/研究员(科研岗)
国家轨道交通电气化与自动化工程技术研究中心(香港分中心)
导师:倪一清 教授(结构健康监测、振动控制领域国际知名教授)
主研方向:结构健康监测,基于声发射与超声导波的轨道伤损检测
2014.10-2016.10 英国谢菲尔德大学 博士后/副研究员
导师:Roger Lewis(英国皇家工程院/RSSB Wheel/Rail Interface Low Adhesion Management研究主席)
主研方向:超声反射法探测机械部件接触技术
2013.05-2016.05 英国Tribosonics公司 研究助理/项目开发员
主研方向:新式超声波探测动态接触问题技术开发、超声波实验设计和实施、超声波探测工具设计和制造、传感器开发
科研项目
1 Towards the application of Graph Convolutional Networks on health monitoring of machine elements and civil infrastructures using ultrasonic sensor networks (P0036813)
HK$250,000, Start-up Fund for RAPs under the Strategic Hiring Scheme, The Hong Kong Polytechnic University, 2021-2023, 独立负责人
开展压电传感网络与超声波监测在交通基础设施性能评估上的关键技术攻关与应用研究;
项目示范应用:温州市域城际铁路线路。
2 服务于高速铁路设备运营维修决策的状态监测及智能化分析技术2018YFE0190100
RMB¥990,000, 港澳台科技创新合作重点专项, 2018-2019, 共同负责人
项目示范应用:广州-汕尾铁路建设及深圳地铁
3 Enhancing safety, punctuality and ride comfort of railway transportation: From local metro system to global high-speed rail network (R5020-18)
HK$8,600,000, Research Impact Fund (RIF), Research Grants Council of Hong Kong (RGC) 香港大型研究影响基金, 2018-2019, 共同负责人
基于光纤-超声导波混合技术的铁轨监测与性能评估;
项目示范应用:香港港铁线路
4 Six-degree-of-freedom Vibration Simulation Platform (CEE-4) (LEF2021-027)
HK$1,000,000, Large Equipment Fund, The Hong Kong Polytechnic University, 2021-2022, 共同负责人
服务于交通基础设施研究领域等大型设备研发技术攻关
5 Engineering an Integrated Wireless Sensing System for High-speed Trains: System Design and Field Test
HK$1,900,000, PolyU Strategic Importance Scheme, The Hong Kong Polytechnic University, 2022-2023, 共同负责人
服务于交通基础设施(铁路)研究领域的技术攻关与系统研发
6 Transformative tropical storm risk mitigation of high-rise building clusters in coastal cities through understanding urban aerodynamics mechanism(P0033495)
HK$200,000, FCE Projects of Strategic Importance: Stage 2 funding, The Hong Kong Polytechnic University, 2021-2023, 共同负责人
沿海区域土木工程结构(高耸结构)监测与评估技术研发
7 多场耦合条件下柔性材料感知机理研究
RMB¥200,000, 深圳虚拟大学园专项资金-基础研究, 深圳市科技创新委员会, 2022-2023, 参与, 高铁和地铁轨道及列车关键部位伤损监测
8 基于时域稀疏贝叶斯的板式无砟轨道CA砂浆脱空损伤快速识别(52178287)
RMB¥580,000, 国家自然科学基金 (面上)
2022-2025, 参与, 交通基础设施(轨道)损伤识别技术研发
发表文献
【书籍章节】
[1] L. Zhou, X. Z. Liu, and Y. Q. Ni (2018), “Contemporary Inspection and Monitoring for High-Speed Rail System”, a chapter of the book: High-Speed Rail, edited by H. Yaghoubi, IntechOpen, London, UK. DOI: 10.5772/intechopen.81159
[2] L. Zhou, Y. Q. Ni, S. X. Chen, X. Z. Liu (2022), “Sensing solutions for assessing and monitoring high-speed railroads”, a chapter of the book: Sensor Technologies for Civil Infrastructures, Volume 2: Applications in structural health monitoring, edited by M. L. Wang, J. P. Lynch, H. Sohn, Woodhead Publishing, Cambridge, UK.
【期刊论文】
[1] L. Zhou, Y. K. Luo & R. Lewis (2022), “Insulated rail joint (IRJ) contact characterisation - an ultrasonic reflectometry approach for a cross-material interface”. Smart Materials and Structures (Accepted and in press), Paper No.: SMS-114433. (Q1, IF: 4.131)
[2] C. Yi, H. X. Huo, X. K. Liao, L. Zhou, L. Ran & J. H. Lin (2022), “Investigation on the characterisation of axle box resonance characteristics to wheel excitation”. Vehicle System Dynamics. DOI: https://doi.org/10.1080/00423114.2022.2103437. (Q1, IF: 3.749)
[3] C. Yi, L. Ran, L. Zhou, H. Wang & J. H. Lin (2022), “Power spectral density-guided variational mode decomposition for the compound fault diagnosis of rolling bearings”. Measurement. DOI: 10.1016/j.measurement.2022.111494. (Q1, IF: 5.131, Joint First Author)
[4] Y. K. Luo, S. X. Chen, L. Zhou*, & Y. Q. Ni (2022), “Evaluating railway noise sources using distributed microphone array and graph neural networks”. Transportation Research Part D: Transport and Environment, Vol. 107 (2022), 103315. DOI: 10.1016/j.trd.2022.103315. (Q1, IF: 7.041)
[5] Y. K. Luo, L. Zhou* & Y. Q. Ni (2022), “Towards the understanding of wheel-rail flange squeal: in-situ experiment and genuine 3D profile-enhanced transient modelling”. Mechanical Systems and Signal Processing, Vol. 180C (2022), 109455. DOI: 10.1016/j.ymssp.2022.109455. (Q1, IF: 8.934)
[6] L. Zhou*, H. P. Brunskill & R. Lewis (2022). “Experimental Investigation on Ball Plate Contact Using Ultrasonic Reflectometry: From Static to Dynamic”. Ultrasonics, Vol. 124, 106733. DOI: 10.1016/j.ultras.2022.106733. (Q1, IF: 4.062)
[7] C. Yi, D. Wang, L. Zhou & J. H. Lin (2021), “A simulation investigation on the influence of pantograph crack defect on graphite contact strip wear”. Engineering Failure Analysis. DOI: 10.1016/j.engfailanal.2021.105889 (Q1, IF: 3.634)
[8] C. Yi, D. Wang, L. Zhou, J. H. Lin & W. H. Zhang (2021), “Evaluation of the influence of pantograph cracks on contact forces in the interaction between pantograph and catenary”. Vehicle System Dynamics. DOI: 10.1080/00423114.2022.2120023. (Q1, IF: 3.749)
[9] L. Zhou*, S. X. Chen, Y. Q. Ni & L. Jiang (2021), “Pitch-Catch UGW-based Multiple Damage Inference: A Heterogeneous Graph Interpretation”. Smart Materials and Structures, Vol. 31, No. 1, 015005. DOI: 10.1088/1361-665X/ac36b0. (Q1, IF: 4.131)
[10] S. X. Chen, L. Zhou* & Y. Q. Ni (2021), “Wheel condition assessment of high-speed trains under various operational conditions using semi-supervised adversarial domain adaptation”. Mechanical Systems and Signal Processing. DOI: 10.1016/j.ymssp.2022.108853. (Q1, IF: 8.934)
[11] S. X. Chen, Y. Q. Ni & L. Zhou (2021), “A deep learning framework for adaptive compressive sensing of high-speed train vibration responses”. Structural Control and Health Monitoring. DOI: 10.1002/stc.2979. (Q1, IF: 6.058)
[12] L. Zhou*, S. X. Chen, Y. Q. Ni & W. H. Choy (2020), “EMI-GCN: A hybrid model for real-time monitoring of multiple bolt looseness using electromechanical impedance and graph convolutional networks”. Smart Materials and Structures, Vol. 30, No. 3, 035032. DOI: 10.1088/1361-665X/abe292. (Q1, IF: 4.131)
[13] S. X. Chen, L. Zhou*, Y. Q. Ni & X. Z. Liu (2020), “An acoustic-homologous transfer learning approach for AE-based rail condition evaluation”. Structural Health Monitoring, Vol. 20, No. 4, 2161-2181. DOI: 10.1177/1475921720976941. (Q1, IF: 5.708)
[14] L. Zhou*, H. P. Brunskill & R. Lewis (2019). “Real-time non-invasive measurement and monitoring of wheel–rail contact using ultrasonic reflectometry”. Structural Health Monitoring, Vol. 18, No. 5-6, 1953-1965. DOI: 10.1177/1475921719829882. (Q1, IF: 5.708)
[15] L. Zhou, H. P. Brunskill, R. Lewis, M. Pletz, W. Daves & S. Scheriau (2019). “Real time measurement of dynamic wheel-rail contacts using ultrasonic reflectometry”. Transactions of the ASME, Journal of Tribology, Vol. 141, No. 6, 9 pages. DOI: 10.1115/1.4043281 (Best Journal Paper Award in 2019). (Q2, IF: 2.045)
[16] H. P. Brunskill, A. Hunter, L. Zhou, D. J. Rob & R. Lewis (2019). “An evaluation of ultrasonic arrays for the static and dynamic measurement of wheel rail contact pressure and area”. Proceedings of the Institution of Mechanical Engineers, Part J, Journal of Engineering Tribology, Vol. 234, No. 10, 1580-1593. DOI: 10.1177/1350650120919889. (Q2, IF: 1.818)
[17] L. Zhou & Y. Q. Ni (2019). “A special issue dedicated to Professor Jan Ming Ko”. Advances in Structural Engineering, Vol. 22, No. 16, 3369-3370. DOI: 10.1177/1369433219877723. (Q2, IF: 2.438)
[18] L. Zhou, R. Lewis & M. B. Marshall (2019). “Wheel-rail endpost contact characterisation using ultrasound reflectometry”. The International Journal of Railway Technology, Vol. 6, No. 4, 29-49. DOI: 10.4203/ijrt.6.4.2. (Q4)
[19] L. Zhou, C. Zhang, Y. Q. Ni & C. Y. Wang (2018). “Real-time condition assessment of railway tunnel deformation using an FBG-based monitoring system”. Smart Structures & Systems, Vol. 21, No. 5, 537-548. DOI: sss.2018.21.5.000. (Q1, IF: 4.581)
[20] L. Zhou, H. P. Brunskill, R. Lewis, M. B. Marshall & R. S. Dwyer-Joyce (2014). “Dynamic Characterisation of the Wheel/Rail Contact using Ultrasonic Reflectometry”. Civil-Comp Proceedings, Vol. 104, 8-11. http://www.scopus.com/inward/record.url?scp=84963721571&partnerID=8YFLogxK. (Q4, IF: 0.6)
【部分会议论文】
[1] L. Zhou, H. P. Brunskill, R. Lewis (2018). “Characterization of Ball-Flat Contact Using Ultrasound Reflectometry: from Static to Dynamic”. Proceedings of the 7th Asia-Pacific Workshop on Structural Health Monitoring, 12th-15th November 2018, Hong Kong, China.
[2] X. Wang, Y.Q. Ni, L. Zhou (2018). “Bayesian approach for fatigue life assessment of high-speed trains using in-service monitoring data”. Proceedings of the 2nd International Workshop on Structural Health Monitoring for Railway System, 17th-19th October 2018, Qingdao, China.
[3] X. Z. Liu, Y. Q. Ni, L. Zhou (2018). “Condition-based maintenance of high-speed railway vehicle wheels through trackside monitoring”. Proceedings of the 2nd International Workshop on Structural Health Monitoring for Railway System, 17th-19th October 2018, Qingdao, China.
[4] L. Zhou, R. Lewis, H. P. Brunskill (2017). “Rail Contact Stress Real-time Monitoring Using Ultrasound Reflectometry”. Proceedings of the 11th International Workshop on Structural Health Monitoring, Vol. 2, 2912-2919, Lancaster, PA: DEStech Publications, 12th-14th September 2017, Stanford University, California, USA.
[5] C. Zhang, Y. Q. Ni, L. Zhou, C. Y. Wang (2017). “A New Railway Tunnel Deformation Monitoring System Using FBG Bending Gauges”. The 2017 World Congress on Advances in Structural Engineering and Mechanics (ASEM17), 28th August-1st September 2017, Ilsan(Seoul), Korea.
[6] L. Zhou, R. Lewis, M. B. Marshall (2015). “Wheel-Rail Endpost Contact Characterisation Using Ultrasound Reflectometry”. Railways 2016, 5th-8th April 2016, Cagliari, Italy.
[7] H. P. Brunskill, L. Zhou, R. Lewis, M. B. Marshall, R. S. Dwyer-Joyce (2012). “Dynamic Characterisation of the Wheel-Rail Contact using Ultrasound Reflectometry”. Proceedings of the 9th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems (CM2012), 27th-30th August 2012, Chengdu, China. DOI: 10.4203/ccp.104.185.
[8] U. Fernando, P. Nott, G. Graham, A. Roberts, T. Sheldrake, H. B. Brunskill, L. Zhou, R. Lewis (2012). “Experimental Evaluation of the Metal-to-Metal Seal Design for High-Pressure Flexible Pipes”. Proceedings of the Offshore Technology Conference, 30th April-3rd May 2012, Houston, Texas, USA.
[9] L. Zhou, R. Lewis, M. B. Marshall, R. S. Dwyer-Joyce (2012). “Analysis and Measurements of Wheel and Rail Endpost Contact using Ultrasound Scanning and Finite Element Method”. Proceedings of the 9th Annual Tribo-UK, 14th-15th March 2012, Southampton, UK.
招生合作
Seeking partners and enthusiastic students for collaborations on multidisciplinary research involving structural health monitoring, ultrasonics, smart materials, big data analysis and railway engineering. Students who wishes to further their research with creative thinking and international vision are particularly welcome.